The Stone-Čech compactification of the rational world
نویسندگان
چکیده
منابع مشابه
Algebra in the Stone - Čech Compactification and its Applications to Ramsey Theory
Let me begin by expressing my sincere gratitude to the Japanese Association of Mathematical Sciences for inviting me to present this lecture and for giving me the JAMS International Prize for 2003 . I am deeply honored. This lecture is not a survey, but simply a discussion of some topics that I find interesting. For the most recent surveys of this subject area in which I have participated see [...
متن کاملthe tragedy of modern man in arthur millers world
what miller wants is a theatre of heightened consciousness. he speaks of two passions in a man, the passion to "feel" and the passion "know". he belives that we can have more of the latter. he says: drama is akin to the other inventions of man in that it ought to help us know more and not merely to spend our feelings. the writing of the crucible shows us that he is trying to give more heightene...
15 صفحه اولa study of the fifth child and ben in the world by doris lessing in the light of julia kristevas psychoanalytic concepts
این مطالعه به بررسی عوامل روانشناختی کریستوادردو رمان دوربس لسینگ،فرزندبنجم و بن دردنیای واقعی می بردازد.موفقیت یا شکست کاراکترهادر تکمیل شکست تتیزی یه کمک بدر وهم از مهم ترین دغدغه محقق می باشد.به بررسی تحلیل روانشناختی تمامی کاراکترها خصوصا بن برداخته و به دنبال نشانه هایی از جامعه شیشه ای کریستوا می باشد.
15 صفحه اولThe Stone-Čech compactification of Tychonoff spaces
A topological space X is said to be completely regular if whenever F is a nonempty closed set and x ∈ X \F , there is a continuous function f : X → [0, 1] such that f(x) = 0 and f(F ) = {1}. A completely regular space need not be Hausdorff. For example, ifX is any set with more than one point, then the trivial topology, in which the only closed sets are ∅ and X, is vacuously completely regular,...
متن کاملStrong shape of the Stone-Čech compactification
J. Keesling has shown that for connected spaces X the natural inclusion e : X → βX of X in its Stone-Čech compactification is a shape equivalence if and only if X is pseudocompact. This paper establishes the analogous result for strong shape. Moreover, pseudocompact spaces are characterized as spaces which admit compact resolutions, which improves a result of I. Lončar.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 1988
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089500007205